
PRE-SYNTHESIS AREA ESTIMATION OF STREAMING VECTOR PROCESSOR-BASED
RECONFIGURABLE ACCELERATORS*

Somsubhra Mondal
EECS Department

Northwestern University

Seda Ogrenci Memik
 EECS Department

Northwestern University

Nikolaos Bellas
Embedded Systems Research Labs

Motorola Inc.

Abstract- One of the major challenges in automated
synthesis of reconfigurable accelerators is to create
efficient designs that conform to the resource capacity of
the target device. This work concerns estimation of the
hardware cost before actually attempting the synthesis of a
streaming accelerator on reconfigurable logic. Specifically,
our proposed framework tackles the problem of pre-
synthesis estimation of data queuing cost and functional
unit area cost, while incorporating the potential impact of
resource constraints and different operator bitwidths on the
final implementation. We present a probabilistic push-and-
pull approach for register queue size estimation and a
bitwidth aware functional unit area estimation of a
streaming data flow graph. We evaluated our techniques
using an industrial toolflow. For the register queue sizes
our estimations are within the range of -14.4% to 12.4% on
an average, for various resource constraints on a set of
multimedia applications. The estimated area of the
functional units is 13.6% higher on average than that of the
synthesized designs.

1. INTRODUCTION
Synthesis targeting reconfigurable logic faces the

challenge of creating designs that comply with the resource
and storage capacity of the target device. Synthesis tools
primarily optimize latency and/or throughput, and often
push the utilization of the target device to its capacity, and
thereby possibly leading to infeasible designs. For faster
design closure and effective design space exploration it is
helpful to have an early estimate of the resource
requirements of a design. In this paper, we present an area
cost estimation technique during automatic synthesis of
reconfigurable accelerators for multimedia applications.

With the increasing popularity of portable devices,
there is a growing demand for multimedia applications.
These applications are computationally intensive and often
streaming in nature. Reconfigurable logic is an effective
medium for creating pipelined hardware as well as for
exploiting parallelism. The Reconfigurable Streaming
Vector Processor (RSVP™ II1) [1, 2] is a pipelined vector
coprocessor architecture that has been implemented on
reconfigurable fabric targeting multimedia applications.
Such streaming accelerators employ a set of functional
units (FU) and they utilize functional pipelining heavily
where it is essential to register the inputs and outputs of
FUs. This is because a FU has to retain its results from
previous iterations (until they have been passed on to all
consumers), while it is busy computing for successive
iterations. In addition, for higher throughput, modulo
scheduling [3, 4] is a widely used scheduling technique
used for such applications. However, higher throughput of
modulo scheduling is achieved at the cost of higher
number of registers [5]. Therefore, register queues at the
outputs of FUs is one of the major building blocks that

* An additional page has been used with permission from the program
chair and in compliance with the submission guidelines, which allow up
to two additional pages in addition to six pages.
1 RSVP is a trademark of Motorola Inc. Other product or service names
are the property of their respective owners.

enable communication between FUs. Finally, the third
major component in this template is the multiplexer
network enabling the routing of data into and among
various FUs.

In this work, we present an early estimation tool to
assess the hardware complexity of realizing such a
template on reconfigurable logic for a given application.
Early estimation, before actually attempting the costly
synthesis and physical design tasks, is crucial for the
following reasons. The reconfigurable accelerator will be
customized by a design space exploration tool, where
several kernels extracted from a complex application need
to be evaluated for their potential speedup if implemented
with this accelerator. This requires a fast comparison of
expected hardware cost for numerous candidate kernels.
Second, for each individual kernel, further dimensions
need to be explored such as different resource constraints
(i.e. different allocation of functional units).

We present an early cost estimation tool that provides
effective means to quickly explore the design space during
automated synthesis of streaming accelerators. Our
techniques enable an accurate estimation of expected cost
without going through the lengthy design cycle spanning
behavioral synthesis and physical synthesis. Specifically,
our proposed technique tackles the problem of pre-
synthesis estimation of data queuing cost, FU area cost,
and multiplexing cost while incorporating the potential
impact of resource constraints and bitwidth variation of
different functional units on the final implementation.

Our main contributions in this paper are as follows:
 We propose a queue size estimation technique for an

unscheduled streaming data flow graph, and
 We propose a bitwidth aware functional unit area and

multiplexer area estimation technique for an
unscheduled streaming data flow graph.
The remainder of this paper is organized as follows.

We overview related work in Section 2. In Section 3 we
describe our pre-synthesis estimation paradigm. Section 4
describes the proposed pre-scheduling register queue
estimation technique. The details of our proposed FU area
estimation technique are presented in Section 5. In Section
6 we present our experimental methodology and results.
Section 7 summarizes our conclusions.

2. RELATED WORK
A compile-time FPGA area estimation approach is
proposed by Kulkarni et al. [6], where the compiler user is
provided with feedback of how much space is used.
Hardware compilers apply extensive transformations that
exploit parallelism, and their area estimation approach
takes into account such compiler optimizations. Brandolese
et al. [7] presented a parametric area estimation method at
System-C level for FPGA-based designs. Their goal is to
reduce the effort of the area estimator to adapt to the
changes in the EDA design environments. An area
estimation of Look-Up Table (LUT) based designs is
proposed by Hamed et al. [8], where VHDL is transformed
into a Boolean network, and then upper and lower bounds
on the number of required LUTs is estimated. Area, time,
and power estimation methodology by Bilavarn et al. [9]

converts a behavioral description in C to a hierarchical
Control/Data Flow Graph (HCDFG). Area estimation from
MATLAB code is presented in [10]. A macro-model based
area estimation is presented by Jiang et al. [11]. Another
high-level FPGA area estimation technique is proposed by
Enzler et al. [12] targeted for telecommunication and
multimedia applications. However, all these work
primarily focus on the area of functional units only, and do
not take into consideration the area of the register queues
at the output of the functional units – a major building
block for streaming accelerator architecture. Moreover, in
most of these work, bitwidth of functional units are also
not considered with the exceptions [10-12].

Moreno et al. [13] proposed a register estimation
method for unscheduled data flow graphs. However, their
estimation assumes register reuse, which is not the case for
the architecture that we are targeting.

In this paper, we propose a unified framework for
estimating both the register requirements and the
functional unit area at the pre-synthesis stage. Prior work
in area cost estimation for reconfigurable hardware
generally assumes a one-on-one mapping of tasks from the
intermediate representation (Data Flow Graph, Control
Data Flow graph) to functional units [6, 8, 11]. Our work
distinguishes itself in the fact that our estimation
techniques can take a given resource constraint into
account. Thereby, our estimation is sensitive to the impact
of resource binding and resource sharing onto hardware
cost. In addition, we provide additional estimation
techniques to account for building blocks specific to
streaming architectures, namely, the data buffers attached
to functional units. To the best of our knowledge, this is
the first of its kind unified and general estimation
framework for the popular reconfigurable accelerator
family of streaming accelerators.

3. ESTIMATION PARADIGM
In this section, we present our pre-synthesis estimation
paradigm for streaming accelerators. First, we present a
brief overview of streaming accelerators. We illustrate
various components of such architecture, and discuss their
significance in our framework.
3.1. Overview of Streaming Accelerators
Streaming applications are characterized by a high degree
of spatial locality and rather poor temporal locality of data
streams. Moreover, data access patterns are often known in
advance which allows (pre)fetching of data streams ahead
of computations. These distinctive features of streaming
data are the key to an effective streaming vector
architecture design. Such streaming applications are often
represented as streaming data flow graphs (sDFG). A
sDFG is a DFG where I/O and internal communication
edges are data streams, and not just simple variables.

The RSVP™ II is an example to such a stream-oriented
vector processing architecture that completely decouples
data access and data processing. The PICO-N system [14,
15] automatically synthesizes similar non-programmable
hardware accelerators. However, RSVP™ II is targeted at
configurable platforms, specifically FPGAs. Figure 1
shows the template of the RSVP™ II architecture [16]. In
this paper, we have used this architecture template and the
industrial automated synthesis tool developed to generate
accelerators based on this template as a reference of
comparison for our early estimation tool.

The two main components of the RSVP™ II
architecture are: (i) the streaming interface unit, and (ii) the
datapath unit. The streaming interface consists of the
Address Generation Unit (AGU), the Address Line and
Bus Line buffers, and a Stream Queue. The major

components of the datapath unit are the functional units,
the associated multiplexers at their inputs, and the register
queues at their outputs. The streaming interface unit
communicates with the datapath unit via FIFO queues, and
it is completely decoupled from the datapath unit. Efficient
memory bandwidth usage by the streaming interface is
ensured by prefetching vector streams from the system
memory (or peripherals). In this paper, our estimation
framework focuses at the datapath unit.

3.2. Methodology
Our pre-synthesis estimation framework consists of two
steps: Given, an unscheduled sDFG, G = (V, E), and a set
of resource constraints R, our goal is to estimate, (i) the
total number of registers in the output queues of all the
functional units, and (ii) the area of the functional units and
associated multiplexers.

4. REGISTER QUEUE SIZE ESTIMATION
Our register queue size estimation technique is a
probabilistic approach at the pre-scheduling stage. The
actual queue sizes at the outputs of FUs will depend on the
scheduling and binding of operations. However,
scheduling is a complex task, and to avoid scheduling for
each and every possible solution in the design space we
propose a fast queue size estimation method. Figure 3
shows our register queue estimation flowchart. In the
following, we will discuss the steps in our queue
estimation technique in detail.

Streaming Interface Unit

Data Path Unit

System Bus

Arbiter

FU FUFU

Streaming Data

Multiplexer Tree

ACC Co
nt

ro
l

Co
nt

ro
l

Co
nt

ro
l

Reg

Reg

Constants

Figure 1. RSVP™ II Architecture

Unscheduled
Input sDFG

Resource
Constraints

Estimate
Iteration Interval

Determine
ASAP and ALAP

Determine min.
queue for edges

Strech edges to
expand queues

Determine queue
size for each node

Determine queue
size for all FUs

Figure 3. Queue size estimation flowchart.

4.1. Iteration Interval Estimation
The first step of our estimation scheme is to determine the
iteration interval of a sDFG based on the resource
constraints. The lower bound of the iteration interval is
estimated based on the technique by Hwang et al. [17].

Let Ni be the number of operations of type i in the
sDFG, which can be implemented using a functional unit
of type i, and let Mi be the number of such functional units.
Then the lower bound of the iteration interval, given t
types of functional units, ItIr, is calculated as,

ItIr = max1≤i≤t (Ni/Mi) (1a)

However, in presence of cycles in the sDFG, iteration
interval can be calculated as follows. Let an instance of
operation opi at iteration ItA be denoted by opi @ ItA, and
lati be its latency. Also, let dege be the associated degree of
each edge e(i, j) which is the number of iterations after
which the result produced by opi will be consumed by opj.
If there is a dependency cycle op1 @ 1 → op2 @ 1 → ... →
opn @ 1 → op1 @ 2, the lower bound on ItIr due to this
cycle is Σ1≤i≤n(lati). In a given sDFG, if there are cycles c1,
c2, ..., ck, then ItIr will be given by,

ItIr = max1≤i≤k (Li/Di) (1b)

where, Li = Σopm∈ci(latm) and Di = Σem∈ci(degm).
4.2. Estimation of Initial Lower Bounds for Queues
The next step is to determine the ASAP and ALAP
schedules of the given sDFG. We have used the ASAP
latency of the sDFG as the upper bound latency for the
ALAP schedule. Note that computing the earliest and latest
start times of operations (i.e. ASAP and ALAP schedules)
is a significantly simpler task than actual resource
constrained scheduling, which will take place during
synthesis and will employ a much more complex
optimizing heuristic to solve the intractable resource
constrained scheduling. Let ASAP(v) and ALAP(v) be the
ASAP and ALAP times of node v∈V. Once we have both
the ASAP and ALAP schedules, we designate a lower
bound on queue sizes to each edge of the sDFG,

QedgeMin(i, j) = ASAP(j) − ALAP(i) − lat(i),

i, j ∈V, e(i, j)∈E (2a)
It may so happen that ASAP(j) is actually less than

ALAP(i) + lat(i) which yields a negative queue size for
edge e(i, j). However, queue sizes cannot be negative, and
there must be a queue at the output of every FU. Therefore,
for such cases we have,

QedgeMin(i, j) = 1, i, j∈V, e(i, j)∈E (2b)
The lower bounds on the queue sizes assigned to each

edge in this step are not very tight. Remainder of our
efforts in queue size estimation is to further tighten these
lower bounds using various novel steps as described in the
following subsections.
4.3. Refinement of Queue Sizes of Edges
We aim to refine the lower bounds on queue sizes under
the given resource constraints. Our main tool is based on
the likelihood estimation that the source node may actually
be producing data before its ALAP time, and likewise, the
sink node may actually be consuming data after its ASAP
time. The likelihood of the source and sink nodes of an
edge being moved up and down respectively during the
actual scheduling depends primarily on resource
constraints of the design and criticality of the nodes. In
addition, it will be affected by the heuristics that a

particular scheduler applies to optimize the throughput by
reducing the register or interconnect pressure. We propose
a probabilistic push-and-pull approach, which estimates
the amount by which a sink node is expected to be pushed
down and the source node to be pushed up for an edge
during scheduling. This will denote an increase in the
initial lower bound of queue size assigned to each edge.
For each edge e(i, j)∈E, we define ∆i as the number of
cycles by which node i is expected to be pulled up, and
similarly, ∆j as the number of cycles by which node j is
estimated to be pushed down.
4.3.1. Pull Force and ∆i Computation
Figure 4 shows the probabilistic push-and-pull queue
expansion of an edge, where each node n is marked with a
set of values, [ASAP(n), ALAP(n), slack(n)], and slack(n) is
given by ALAP(n) − ASAP(n).

Now let us consider node i in Figure 4. Node i can be
pulled up by the scheduler because it may actually be
scheduled earlier, therefore produce data before its ALAP
time. Let P(i)k be the probability that node i is scheduled in
cycle k. So, assuming that node i can be pulled up only up
to ASAP(i), we have,

1)(
)(

)(
=∑

=

iALAP

iASAPk
kiP , and k < ASAP(i) ∨ k > ALAP(i) ⇒ P(i)k = 0

If the scheduler primarily tries to optimize latency, it
will try to pull up node i as high as possible from its ALAP
cycle. But due to the resource constraints, it can pull up
node i only by a certain extent, depending upon the number
of more critical nodes in the interval [ASAP(i), ALAP(i)]
and the number of similar operations in each cycle of the
ALAP schedule in that interval. On the other hand, the
scheduler will try to reduce the register burden by trying to
schedule node i as close as possible to its ALAP cycle.
These two counter-acting forces ultimately determine the
total pull force exerted on node i.

Let MoreCritALAP(i) be the number of more critical
nodes in the interval [ASAP(i), ALAP(i)] of the ALAP
schedule, and let N(i) be the number of FUs available to
implement the operation performed by node i, then, we
define MaxUp(i) as the cycle up to which node i can be
pulled up from its ALAP cycle, and is given by,

MaxUp(i) = ASAP(i) + MoreCritALAP(i) / N(i) (4)

a b

i

j

C 1

C 2

C 3

C 4

C 5

C 10

C 11

C 12

m

n

[1, 1, 0] [1, 1, 0]

[1, 5, 4]

[10, 12, 2] [10, 10, 0]

[12, 13, 1]max(∆j)

max(∆i)

pull

push

C 13

C 14

2 extra cycles beyond
ALAP cycle assuming

ItIr =3

Reserved for
nodes a and b

Reserved for
node m

Movement for
node i

Movement for
node j

Figure 4. Probabilistic queue expansion by push-and-pull

It can so happen that that MaxUp(i) is greater than
ALAP(i) because of larger number of more critical nodes
than node i and/or fewer available resources. In such cases
we have, MaxUp(i) = ALAP(i).

In Figure 4, assuming we have only one functional unit
that can implement operations a, b, and i, we have
MaxUp(i) equal to 3, because nodes a and b are more
critical than node i. In other words, node i cannot be pulled
up any further above cycle 3. Therefore, both P(i)1 and
P(i)2 equal 0, because our technique assumes that cycles 1
and 2 are reserved for nodes a and b.

Next, we will calculate P(i)k for each k within the
interval [MaxUp(i), ALAP(i)]. The probability that node i
is scheduled in cycle k depends on the contention for
resources within cycle k. Also, since the scheduler will try
to alleviate the register burden of each node, it will try to
schedule it as close as possible to its ALAP cycle.

Let Nk(i) be the number of operations of the same type
as node i in cycle k of the ALAP schedule, then the pull
force on node i by cycle k will be given by,

Pull(i)k = (k – MaxUp(i) + 1) / Nk(i) (5)
Based on the pull forces, we compute P(i)k as,

∑
=

=
)(

)(
)(

)(
)(

iALAP

iMaxUpm
m

k
k

iPull

iPull
iP (6)

We then compute the expected value of ∆i, which is the
number of cycles that node i is likely to be pulled up, based
on P(i)k as,

∑
−

=
−⋅=∆

)()(

0
)()(][

iMaxUpiALAP

m
miALAPiPmiE (7)

4.3.2. Push Force and ∆j Computation
Now let us consider node j in Figure 4. Node j can be
pushed down by the scheduler because it may actually be
scheduled later therefore consume data after its ASAP
time. Let P(j)k be the probability that node i is scheduled in
cycle k. We assume that node j can be pulled down up to
cycle ALAP(j) + ItIr – 1, we have,

1)(
1)(

)(
=∑

−+

=

ItIrjALAP

jASAPk
kjP , and

k < ASAP(j) ∨ k > ALAP(j)+ItIr –1 ⇒ P(j)k = 0

Let MoreCritASAP(j) be the number of more critical
nodes in the interval [ASAP(j), ALAP(j) + ItIr – 1] of the
ASAP schedule, and let N(j) be the number of FUs
available to implement the operation performed by node j.
We define MinDown(j) as the cycle up to which node j is
estimated to be pushed down from its ASAP cycle,

MinDown(j) = ASAP(j) + MoreCritASAP(j) / N(j) (8a)
It can so happen that MinDown(j) is greater than

ALAP(j) + ItIr – 1 because of larger number of more
critical nodes than node j and/or fewer resources available.
In such cases we have,

MinDown(j) = ALAP(j) + ItIr – 1 (8b)
By similar arguments, for the push force, we calculate

P(j)k for each k within the interval [MinDown(j), ALAP(j) +
ItIr – 1] in a similar manner.

Push(j)k = (ALAP(j) + ItIr – k) / Nk(j) (9)

∑
−+

=

= 1)(

)(
)(

)(
)(ItIrjALAP

jMinDownm
m

k
k

jPush

jPush
jP (10)

Finally, we compute the expected value of ∆j, which is
the number of cycles that node j is likely to be pushed
down as,

∑
−+

−=
+⋅=∆

)()(

)()(
)()(][

jMinDownItIrjALAP

jASAPjMinDownm
mjASAPjPmjE (11)

Now, the new expanded queue size for each edge e(i, j)
will be, QedgeExpand(i, j) = QedgeMin(i, j) + E[∆i] + E[∆j]

From the queue sizes of the edges we calculate the
queue size of nodes. The expanded queue size of each node
will simply be the maximum queue size of all outgoing
edges of that node. Therefore, based on that we have,

QnodeExpand(i) = max{QedgeExpand(i, j) : e(i, j)∈E} (12)
Now, that we have QnodeExpand(i), because of the

iteration interval (ItIr) this will be reduced by a factor of
ItIr. If ItIr equals 1, i.e. a new iteration starts every cycle,
the queue sizes are at their maximum. If ItIr equals 2, then
a new iteration starts every other cycle, and in that case the
required queue size of all nodes are halved and so on.
Therefore, the final queue size of a node i is given by,

Qnode(i) = QnodeExpand(i) / ItIr (13)

4.4. Final Refinement of Queue Sizes of FUs by
Resource Constraint Correction Factor

Because of resource constraints, more than one node of the
sDFG may be mapped onto a single FU. Let t be the
number of types of FUs, and there are M1, M2, ..., Mt FUs
of each type. If the sDFG has N1, N2, ..., Nt nodes that are
mapped onto these FUs, the average number of nodes
mapped per FU of type i will be Ni/Mi ∀ 1≤i≤t. When
multiple nodes are mapped onto a single FU, the queue at
its output is also shared by the nodes.

With resource sharing, the queue size of an FU will be
determined by the Qnode values of the nodes mapped onto
that FU. Therefore, queue size of an FU has to be at least
the maximum of Qnode values, and at most the sum of the
Qnode values. However, there are two counteracting factors
that determine the actual queue size of an FU. First, with
fewer resources, more nodes are mapped onto a particular
FU, and this tends to reduce the queue size at the output of
each FU. Second, as resources become scarce, there will be
more contention for resources, and hence the result
produced by a node has to be in the queue for a longer
duration before it can be consumed. This denotes an
increase in the queue size of an FU. Based on these
observations, we experimented with various resource
constraints to determine a Resource Constraint Correction
Factor (RCCF) for type t of FU, given by,

 )/ln(
1

eMN
RCCF

tt
t +
= (14)

The natural logarithmic base e is introduced in
Equation (14) to make sure that RCCF is at most 1, which
is the case when there are more resources available than
operations.

Since our estimation is at a pre-scheduling stage, it is
not known how the nodes are distributed among the FUs.
Therefore, we estimate QTotal, which is the total queue size
of all FUs. The total queue size of all FUs of a particular
type is determined by the sum of all nodes of that type

multiplied by the RCCF of that type. Finally, the total
queue size for all FUs is simply the sum of queue sizes of
all such types of FUs. Therefore QTotal is given by,

))((
1 1
∑ ∑
= =

⋅=
t

i

iN

j

node
i

Total jQRCCFQ (15)

5. BITWIDTH SENSITIVE FUNCTIONAL UNIT
AREA ESTIMATION

The pre-synthesis area estimation technique presented in
this paper performs a fast
area estimation of a
streaming kernel. Similar
to the queue size
estimation technique, the
input to the FU area
estimation is also a sDFG
and a set of resource
constraints. In addition,
the input to the tool will
also include knowledge
of resource usage of
operations mapped onto
FUs. Figure 5 shows our
FU area estimation
methodology.

5.1. Library Creation
The first step of our functional unit area estimation is to
create a library that contains the area cost information of
different operations. The entries in the library file are
obtained by synthesizing designs that only use that
particular resource for which we are trying to estimate the
area. For example, to estimate the area of a FU that
performs a vadd operation (basic add operation in RSVP™
II Instruction Set Architecture), we synthesize a hardware
description of the adder block (and associated registers)
using Xilinx ISE 8.1. This is done for various bitwidths of
the vadd operation.

Although each operation is synthesized for different
bitwidths (8, 16, 24, and 32) of the inputs, synthesizing
each operation for all possible bitwidths will require
substantial amount of time and resources. Therefore,
whenever the estimation tool does not find a corresponding
entry in the library, it inter/extrapolates the resource usage.
For example if the library has entries for 16-bit and 24-bit
vadd operation, but an estimate is needed for 20-bit, the
tool interpolates the number of required FPGA slices from
the 16-bit and 24-bit vadd entries.

The estimation of multiplexer area is more complicated
because the number of FPGA slices depends not only on
the bitwidth and the number of inputs, but also on the
number of don’t care inputs (no-ops) and their relative
positions. Therefore synthesizing multiplexers to create
library entries with all these variations is time consuming
and inefficient. Hence, to estimate multiplexer area, we
resorted to a standard curve-fitting technique. The number
of FPGA slices for multiplexers is generated by a second
degree least square curve fitting function based on the
input size, bitwidth, and the number of don’t care inputs.
5.2. Estimation of Functional Units
In the first phase of our functional unit area estimation, we
estimate the iteration interval ItIr of the given sDFG based
on the given resource constraints, as described in Section
4.1. Once we estimate the iteration interval of the given
sDFG we need to estimate the number of FUs of each type
that are required. Let Ni be the number of operations of
type i in the sDFG, which can be implemented using a

functional unit of type i. Also, let there be t types of
functional units, and Mi be the number of available
functional units of type i as specified by the resource
constraints. Then the estimated number of functional units
of type i, mi, is given by,

mi = Ni/ItIr ∀i : 1 ≤ i ≤ t ⇒ mi ≤ Mi (16)

Once we estimate the number of required functional
units, the sDFG is scanned to gather information about
what operations are performed and their bitwidths. Note
that the input sDFG is annotated with required bitwidths of
individual operations. In many synthesis flows bidwith
allocation is performed first to achieve minimal operator
bitwidths for a required computation accuracy. Such an
optimization pass would already be applied to the input
sDFGs before starting our estimation phase. We then
categorize operations into a small number of subsets based
on their bitwidths. For instance, we categorize operations
into four groups in terms of their bitwidths (1-8 bits, 9-16
bits, 17-24 bits, and 25-32 bits). Next, we estimate what
sizes of functional units are likely to be used by the
scheduler to map these operations from these categories.
The estimated number of functional units, mi, is distributed
proportionately among each such bitwidth group. The
rationale behind this is to emulate the bitwidth-aware
optimization that will be performed by the actual
scheduler. When mapping a sDFG onto reconfigurable
logic, the scheduler takes advantage of the fact that on
reconfigurable logic bitwidths of individual functional
units can be customized in order to create an area efficient
design. To achieve this, the scheduler will try to group
operations of similar bitwidths together and assign them to
the same functional unit.

In the RSVP™ II architecture, a single type of FU can
implement several types of operations. Each of these
operations will have different resource requirements when
mapped to a FU, depending on their complexity. However,
at the pre-scheduling stage it is not known which particular
FU will perform which set of compatible operations.
Therefore, in order to make an area estimation of a
particular type of FU, we use the maximum area usage
among all operations of a sDFG that can be mapped onto
that FU. Let FUt be a functional unit of type t that
implements operations opt1, opt2, ..., optn of a particular
bitwidth group, and their respective area usage be
Areaop(t1), Areaop(t2), ..., Areaop(tn). Therefore, the estimated
area of such a functional unit, AreaFU(t), in terms of FPGA
slices, is given by,
AreaFU(t) = max1≤i≤n(Areaop(ti)) (17)

Table I. Resource requirements for different operations

Operation # inputs # slices
vabs 1 16
vadd 2 9
vneg 1 8
vsub 2 24

Table I shows the four operations that are implemented

by the ALU FU. The number of slices depends on the
number of inputs of the operation and their bitwidth (16-bit
in this case). As seen from Table I, operation vneg requires
only 8 slices, whereas the vsub operation requires 24
slices. In such cases, if a FU implements more than one
such operation, for our estimation we choose the one with
the largest number of slices. For example, if a FU

Unscheduled
Input sDFG

Resource
Constraints

Estimate
FUs

Verilog for
different ops

Synthesis with
Xilinx ISE 8.1

Library

Functional Unit
Area Estimation

Estimate
Multiplexers

Figure 5. Functional Unit
area estimation.

implements vadd and vabs operations, we estimate the
area of that FU as 16 slices.
5.3. Estimation of Multiplexers
Once we have estimated the number of different functional
units of each type, we need to estimate the number and size
of the multiplexers at the inputs of those functional units.
In addition, we will also need a multiplexer for each
functional unit to choose between the different operations
it performs in different cycles. Therefore, for an n-input
functional unit, we need n+1 multiplexers. The bitwidth of
the multiplexers at the inputs of functional units will be
determined from the bitwidth specification of the
operations as specified in the sDFG.

The number of inputs of a multiplexer will be equal to
the iteration interval because in each cycle of the iteration
interval the multiplexer has to choose the appropriate input
from a set of available signals. So the number of inputs of
the multiplexers, Mux#IP = ItIr , such that the number of
selector bits for the multiplexer Mux#SelBits = log2(ItIr) .
 As stated in Section 5.1 the area of multiplexers in our
estimation is based on three parameters: (i) Number of
inputs, (ii) Bitwidth of inputs, and (iii) Number of no-ops.
Now, since we do not know which operations are mapped
to which functional units, we assume uniform distribution
of operations among FUs. Therefore for Nt operations of

type t, and mt FUs of type t, we assume that each FU
implements Nt/mt operations. So, the number of no-ops
among its inputs Mux#NoOps = Mux#IP – Nt/mt  .
 Finally, if MuxOpndBW(t) is the bitwidth of a multiplexer,
the area of a multiplexer at the inputs of a functional unit
of type t is estimated as a function f of these three
parameters, as,

AreaOpndMUX(t) = f (Mux#IP(t), MuxOpndBW(t), Mux#NoOps(t)) (18)
and the bitwidth of the multiplexer that chooses between
the operations the FU performs is given by,

MuxOpsBW(t) = log2(Nt/mt) (19)
Therefore, the area of the multiplexers for choosing the
operations performed by the functional units is given by,

AreaOpsMUX(t) = f (Mux#IP(t), MuxOpsBW(t), 0) (20)
This function f is a second order curve fitting equation

based on a set of multiplexer area determined by synthesis
with Xilinx ISE 8.1.

Finally, the total area of the functional units and the
multiplexers will be given by AreaDataPath as,

)()()()(

1

iOpsMUXiOpndMUXiFU
t

i
i AreaAreanAream +×+∑

=
 (21)

Table II. Queue size estimation results

RC Set 1 RC Set 2 RC Set 3 RC Set 4

Application

no

de
s

Sy
nt

he
siz

ed

Es
tim

at
ed

%
 E

rr
or

Sy
nt

he
siz

ed

Es
tim

at
ed

%
 E

rr
or

Sy
nt

he
siz

ed

Es
tim

at
ed

%
 E

rr
or

Sy
nt

he
siz

ed

Es
tim

at
ed

%
 E

rr
or

dctCol 85 103 152 47.6 103 152 47.6 36 44 22.2 36 44 22.2
dctRow 95 111 168 51.4 71 168 136.6 41 49 19.5 41 49 19.5

hpf_med_cc 157 404 347 -14.1 263 194 -26.2 76 91 19.7 77 85 10.4
lpf_gc_rgb 221 697 508 -27.1 394 293 -25.6 103 117 13.6 108 107 -0.9

lpr 67 150 110 -26.7 150 110 -26.7 58 67 15.5 39 42 7.7
open 30 71 47 -33.8 71 47 -33.8 44 34 -22.7 30 29 -3.3
quant 10 13 13 0.0 13 13 0.0 13 13 0.0 13 13 0.0

RsvpLPR 67 150 110 -26.7 150 110 -26.7 58 67 15.5 39 42 7.7
Average 92.7 212.4 181.9 -14.4 151.9 135.9 -10.5 53.6 60.3 12.4 47.8 51.4 7.3

5.4. Complexity
Finally, we would like to emphasize that the complexity of
our estimation paradigm is largely insignificant in
comparison to the complexity of the optimizing scheduler
and the remainder of the behavioral and physical synthesis
steps. Therefore, performing the abovementioned steps is
justified in terms of computational cost as opposed to
performing the actual synthesis steps. More specifically,
we observe that the combined run time of our estimation
for all of the applications takes less than a few seconds. On
the other hand, scheduling and synthesizing each
application takes several minutes using an industrial
automated front-end synthesis tool and Xilinx ISE 8.1
physical synthesis backend tools.

6. EXPERIMENTAL RESULTS
The effectiveness of the proposed estimation paradigm is
evaluated for a set of industrial applications from the
multimedia domain. This benchmark suite includes various

video and image compression and filtering algorithms (e.g.
dctCol, hpf_med_cc, lpf_gc_rgb) as well as applications
such as license plate recognition (RsvpLPR). We compare
our estimates for both the steps in our framework with
corresponding results generated by the toolflow proposed
by Bellas et al. [16]. In the following, we present our
experimental results for each of the estimation method.
6.1. Queue Size Estimation Results
We have evaluated our queue size estimation technique on
a set of industrial multimedia applications. For each
application we have chosen four different sets of resource
constraints. We compare our results by the required queue
sizes as determined by the modulo scheduler employed by
an industrial automated synthesis tool [16]. Table II shows
our results. In Table II, RC (Resource Constraint) Set 1
corresponds to unlimited resources, and the resources
become scarce progressively across RC Set 2 through Set
4.

From Table II we observe that as the available
resources decrease (From RC Set 1 to RC Set 4), the queue
sizes also decrease, as discussed in Section 4.4. This is
because when there are plenty of resources (e.g. RC Set 1),
each node (operation) of the sDFG is assigned its own
functional unit, and there is no sharing of the queue at the
output of the functional unit. When resources are scarce
(e.g. RC Set 4), the queue sizes are reduced substantially
because of resource sharing.

Resource sharing can impact the queue sizes. However,
this is decided by the scheduler and after our estimation.
Therefore, since we are only interested in the overall
register queue size of an application mapped onto an
FPGA, and we have no knowledge of how resources are
shared, our estimates are based on the average number of
operations mapped per functional unit.
6.2. Functional Unit Area Estimation Results
For the functional unit area estimation, we have evaluated
our results by comparing the area obtained by our
estimation to that generated by the industrial hardware
generator tool as described in [16]. The Verilog code
generated is synthesized using Xilix ISE 8.1, and mapped
onto Virtex 4 XC4VLX100 FPGA. Table III shows our
estimation results. The results presented in Table III
correspond to the same set of resource constraints as in RC
Set 3 in Section 6.1, which is the default configuration of
the RSVP™ II architecture.

Table III. Functional Unit Area Estimation

Slices
Application

Synthesized Estimated

%
Error

dctCol 2175 2245 3.2
dctRow 1937 2375 22.6

hpf_med_cc Over-mapped 3192 NA
lpf_gc_rgb 4324 5140 18.9

lpr 1520 1805 18.8
open 1132 1095 -3.3
quant 492 422 -14.2

RsvpLPR 1520 1805 18.8
Average 1871.4 2126.7 13.6

As seen from Table III, for the application hpf_med_cc

the estimation error cannot be calculated because the
design could not be synthesized on any Xilinx Virtex 4
device. The Virtex 4 XC4VLX100 has 960 user I/Os,
which is the maximum I/O capability provided in this
family of devices. However, this particular application
requires more than 960 I/Os, and the synthesis process fails
at the mapping stage as the device was overmapped. The
I/O usage is one aspect that cannot be captured in our
estimation framework in its current form, since we focus
on area cost estimation. For the remainder of the
applications, our estimation is accurate and with an
average error of 13.6%. Previous work by Kulkarni et al.
[6] reports results that are about 10% better than ours.
However, their estimation is based on a 1-to-1 mapping of
nodes of the DFG to resources. Our estimation is trying to
capture a more general case by taking resource constraints
and sharing into account.

7. CONCLUSIONS
In this paper we have presented a framework to provide
early estimates of the implementation cost of

reconfigurable streaming accelerators. Our estimation
methodology has two steps: (1) A probabilistic push-and-
pull approach to determine the register queue size at the
outputs of functional units, (2) A library based approach to
estimate the functional unit area incorporating bitwidth
awareness. We evaluated our estimation results based on
synthesized designs using an industrial template-based
toolflow for a set of multimedia applications. For the
register queue sizes our estimations are within the range of
-14.4% to 12.4% on an average. The estimated area of the
functional units is 13.6% higher on an average than that of
the synthesized designs.

8. REFERENCES
[1] S. Chiricescu, et al., "The Reconfigurable Streaming
Vector Processor (RSVP™)," International Symposium on
Microarchitecture, 2003.
[2] S. Chiricescu, et al., "RSVP II: A Next Generation
Automotive Vector Processor," 2005.
[3] B. Rau, "Iterative modulo scheduling: an algorithm for
software pipelining loops," International Symposium on
Microarchitecture, 1994.
[4] K. Fan, et al., "Cost Sensitive Modulo Scheduling in a
Loop Accelerator Synthesis System," International
Symposium on Microarchitecture, 2005.
[5] A. Eichenberger, et al., "Minimum Register
Requirements for a Modulo Schedule," International
Symposium on Microarchitecture, 1994.
[6] D. Kulkarni, et al., "Fast Area Estimation to Support
Compiler Optimizations in FPGA-based Reconfigurable
Systems," IEEE Symposium on Field-Programmable
Custom Computing Machines, 2002.
[7] C. Brandolese, et al., "An Area Estimation
Methodology for FPGA Based Designs at SystemC-
Level," Design Automation Conference, 2004.
[8] B. Hamed, et al., "Area Estimation of LUT bsed
designs," International Conference on Computer
Engineering & Systems 2004.
[9] S. Bilavarn, et al., "Area Time Power Estimation for
FPGA Based Designs at a Behavioral Level," International
Conference on Electronics, Circuits and Systems, 2000.
[10] A. Nayak, et al., "Accurate Area and Delay Estimators
for FPGAs," Design, Automation and Test in Europe,
2002.
[11] T. Jiang, et al., "Macro-models for High Level Area
and Power Estimation on FPGAs," Great Lakes
Symposium on VLSI, 2004.
[12] R. Enzler, et al., "High-Level Area and Performance
Estimation of Hardware Building Blocks on FPGAs," Int.
Conf. on Field Programmable Logic and Applications,
2000.
[13] R. Moreno, et al., "Register estimation in unscheduled
dataflow graphs," ACM Transactions on Design
Automation of Electronic Systems, vol. 1, pp. 396 - 403,
1996.
[14] S. Aditya, et al., "Automatic architecture synthesis of
VLIW and EPIC processors," Int. Symp. on System
Synthesis, 1999.
[15] R. Schreiber, et al., "High-Level Synthesis of
Nonprogrammable Hardware Acclerators," Journal of
VLSI Signal Processing, 2002.
[16] N. Bellas, et al., "FPGA Implementation of a License
Plate Recognition Soc Using Automatically Generated
Streaming Accelerators," Reconfigurable Architecture
Workshop, 2006.
[17] C. Hwang, et al., "PLS: A scheduler for pipeline
synthesis," IEEE Transactions on CAD/ICAS, vol. 12, pp.
1279-1286, 1993.

