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Abstract- One of the major challenges in automated 
synthesis of reconfigurable accelerators is to create 
efficient designs that conform to the resource capacity of 
the target device. This work concerns estimation of the 
hardware cost before actually attempting the synthesis of a 
streaming accelerator on reconfigurable logic. Specifically, 
our proposed framework tackles the problem of pre-
synthesis estimation of data queuing cost and functional 
unit area cost, while incorporating the potential impact of 
resource constraints and different operator bitwidths on the 
final implementation. We present a probabilistic push-and-
pull approach for register queue size estimation and a 
bitwidth aware functional unit area estimation of a 
streaming data flow graph. We evaluated our techniques 
using an industrial toolflow. For the register queue sizes 
our estimations are within the range of -14.4% to 12.4% on 
an average, for various resource constraints on a set of 
multimedia applications. The estimated area of the 
functional units is 13.6% higher on average than that of the 
synthesized designs. 

1. INTRODUCTION 
Synthesis targeting reconfigurable logic faces the 

challenge of creating designs that comply with the resource 
and storage capacity of the target device. Synthesis tools 
primarily optimize latency and/or throughput, and often 
push the utilization of the target device to its capacity, and 
thereby possibly leading to infeasible designs. For faster 
design closure and effective design space exploration it is 
helpful to have an early estimate of the resource 
requirements of a design. In this paper, we present an area 
cost estimation technique during automatic synthesis of 
reconfigurable accelerators for multimedia applications.  

With the increasing popularity of portable devices, 
there is a growing demand for multimedia applications. 
These applications are computationally intensive and often 
streaming in nature. Reconfigurable logic is an effective 
medium for creating pipelined hardware as well as for 
exploiting parallelism. The Reconfigurable Streaming 
Vector Processor (RSVP™ II1) [1, 2] is a pipelined vector 
coprocessor architecture that has been implemented on 
reconfigurable fabric targeting multimedia applications. 
Such streaming accelerators employ a set of functional 
units (FU) and they utilize functional pipelining heavily 
where it is essential to register the inputs and outputs of 
FUs. This is because a FU has to retain its results from 
previous iterations (until they have been passed on to all 
consumers), while it is busy computing for successive 
iterations. In addition, for higher throughput, modulo 
scheduling [3, 4] is a widely used scheduling technique 
used for such applications. However, higher throughput of 
modulo scheduling is achieved at the cost of higher 
number of registers [5]. Therefore, register queues at the 
outputs of FUs is one of the major building blocks that 
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enable communication between FUs. Finally, the third 
major component in this template is the multiplexer 
network enabling the routing of data into and among 
various FUs. 

In this work, we present an early estimation tool to 
assess the hardware complexity of realizing such a 
template on reconfigurable logic for a given application. 
Early estimation, before actually attempting the costly 
synthesis and physical design tasks, is crucial for the 
following reasons. The reconfigurable accelerator will be 
customized by a design space exploration tool, where 
several kernels extracted from a complex application need 
to be evaluated for their potential speedup if implemented 
with this accelerator. This requires a fast comparison of 
expected hardware cost for numerous candidate kernels. 
Second, for each individual kernel, further dimensions 
need to be explored such as different resource constraints 
(i.e. different allocation of functional units).   

We present an early cost estimation tool that provides 
effective means to quickly explore the design space during 
automated synthesis of streaming accelerators. Our 
techniques enable an accurate estimation of expected cost 
without going through the lengthy design cycle spanning 
behavioral synthesis and physical synthesis. Specifically, 
our proposed technique tackles the problem of pre-
synthesis estimation of data queuing cost, FU area cost, 
and multiplexing cost while incorporating the potential 
impact of resource constraints and bitwidth variation of 
different functional units on the final implementation.  

Our main contributions in this paper are as follows: 
 We propose a queue size estimation technique for an 

unscheduled streaming data flow graph, and 
 We propose a bitwidth aware functional unit area and 

multiplexer area estimation technique for an 
unscheduled streaming data flow graph. 
The remainder of this paper is organized as follows. 

We overview related work in Section 2. In Section 3 we 
describe our pre-synthesis estimation paradigm. Section 4 
describes the proposed pre-scheduling register queue 
estimation technique. The details of our proposed FU area 
estimation technique are presented in Section 5. In Section 
6 we present our experimental methodology and results. 
Section 7 summarizes our conclusions. 

2. RELATED WORK 
A compile-time FPGA area estimation approach is 
proposed by Kulkarni et al. [6], where the compiler user is 
provided with feedback of how much space is used. 
Hardware compilers apply extensive transformations that 
exploit parallelism, and their area estimation approach 
takes into account such compiler optimizations. Brandolese 
et al. [7] presented a parametric area estimation method at 
System-C level for FPGA-based designs. Their goal is to 
reduce the effort of the area estimator to adapt to the 
changes in the EDA design environments. An area 
estimation of Look-Up Table (LUT) based designs is 
proposed by Hamed et al. [8], where VHDL is transformed 
into a Boolean network, and then upper and lower bounds 
on the number of required LUTs is estimated. Area, time, 
and power estimation methodology by Bilavarn et al. [9] 



converts a behavioral description in C to a hierarchical 
Control/Data Flow Graph (HCDFG). Area estimation from 
MATLAB code is presented in [10]. A macro-model based 
area estimation is presented by Jiang et al. [11]. Another 
high-level FPGA area estimation technique is proposed by 
Enzler et al. [12] targeted for telecommunication and 
multimedia applications. However, all these work 
primarily focus on the area of functional units only, and do 
not take into consideration the area of the register queues 
at the output of the functional units – a major building 
block for streaming accelerator architecture. Moreover, in 
most of these work, bitwidth of functional units are also 
not considered with the exceptions [10-12]. 

Moreno et al. [13] proposed a register estimation 
method for unscheduled data flow graphs. However, their 
estimation assumes register reuse, which is not the case for 
the architecture that we are targeting.  

In this paper, we propose a unified framework for 
estimating both the register requirements and the 
functional unit area at the pre-synthesis stage. Prior work 
in area cost estimation for reconfigurable hardware 
generally assumes a one-on-one mapping of tasks from the 
intermediate representation (Data Flow Graph, Control 
Data Flow graph) to functional units [6, 8, 11]. Our work 
distinguishes itself in the fact that our estimation 
techniques can take a given resource constraint into 
account. Thereby, our estimation is sensitive to the impact 
of resource binding and resource sharing onto hardware 
cost. In addition, we provide additional estimation 
techniques to account for building blocks specific to 
streaming architectures, namely, the data buffers attached 
to functional units. To the best of our knowledge, this is 
the first of its kind unified and general estimation 
framework for the popular reconfigurable accelerator 
family of streaming accelerators.  

3. ESTIMATION PARADIGM 
In this section, we present our pre-synthesis estimation 
paradigm for streaming accelerators. First, we present a 
brief overview of streaming accelerators. We illustrate 
various components of such architecture, and discuss their 
significance in our framework. 
3.1. Overview of Streaming Accelerators 
Streaming applications are characterized by a high degree 
of spatial locality and rather poor temporal locality of data 
streams. Moreover, data access patterns are often known in 
advance which allows (pre)fetching of data streams ahead 
of computations. These distinctive features of streaming 
data are the key to an effective streaming vector 
architecture design. Such streaming applications are often 
represented as streaming data flow graphs (sDFG). A 
sDFG is a DFG where I/O and internal communication 
edges are data streams, and not just simple variables.  

The RSVP™ II is an example to such a stream-oriented 
vector processing architecture that completely decouples 
data access and data processing. The PICO-N system [14, 
15] automatically synthesizes similar non-programmable 
hardware accelerators. However, RSVP™ II is targeted at 
configurable platforms, specifically FPGAs. Figure 1 
shows the template of the RSVP™ II architecture [16]. In 
this paper, we have used this architecture template and the 
industrial automated synthesis tool developed to generate 
accelerators based on this template as a reference of 
comparison for our early estimation tool. 

The two main components of the RSVP™ II 
architecture are: (i) the streaming interface unit, and (ii) the 
datapath unit. The streaming interface consists of the 
Address Generation Unit (AGU), the Address Line and 
Bus Line buffers, and a Stream Queue. The major 

components of the datapath unit are the functional units, 
the associated multiplexers at their inputs, and the register 
queues at their outputs. The streaming interface unit 
communicates with the datapath unit via FIFO queues, and 
it is completely decoupled from the datapath unit. Efficient 
memory bandwidth usage by the streaming interface is 
ensured by prefetching vector streams from the system 
memory (or peripherals). In this paper, our estimation 
framework focuses at the datapath unit. 

3.2. Methodology 
Our pre-synthesis estimation framework consists of two 
steps: Given, an unscheduled sDFG, G = (V, E), and a set 
of resource constraints R, our goal is to estimate, (i) the 
total number of registers in the output queues of all the 
functional units, and (ii) the area of the functional units and 
associated multiplexers. 

4. REGISTER QUEUE SIZE ESTIMATION 
Our register queue size estimation technique is a 
probabilistic approach at the pre-scheduling stage. The 
actual queue sizes at the outputs of FUs will depend on the 
scheduling and binding of operations. However, 
scheduling is a complex task, and to avoid scheduling for 
each and every possible solution in the design space we 
propose a fast queue size estimation method. Figure 3 
shows our register queue estimation flowchart. In the 
following, we will discuss the steps in our queue 
estimation technique in detail. 
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4.1. Iteration Interval Estimation 
The first step of our estimation scheme is to determine the 
iteration interval of a sDFG based on the resource 
constraints. The lower bound of the iteration interval is 
estimated based on the technique by Hwang et al. [17]. 

Let Ni be the number of operations of type i in the 
sDFG, which can be implemented using a functional unit 
of type i, and let Mi be the number of such functional units. 
Then the lower bound of the iteration interval, given t 
types of functional units, ItIr, is calculated as, 

ItIr = max1≤i≤t (Ni/Mi)    (1a) 

However, in presence of cycles in the sDFG, iteration 
interval can be calculated as follows. Let an instance of 
operation opi at iteration ItA be denoted by opi @ ItA, and 
lati be its latency. Also, let dege be the associated degree of 
each edge e(i, j) which is the number of iterations after 
which the result produced by opi will be consumed by opj. 
If there is a dependency cycle op1 @ 1 → op2 @ 1 → ... → 
opn @ 1 → op1 @ 2, the lower bound on ItIr due to this 
cycle is Σ1≤i≤n(lati). In a given sDFG, if there are cycles c1, 
c2, ..., ck, then ItIr will be given by, 

ItIr = max1≤i≤k (Li/Di)    (1b) 

where, Li = Σopm∈ci(latm) and Di = Σem∈ci(degm).  
4.2. Estimation of Initial Lower Bounds for Queues  
The next step is to determine the ASAP and ALAP 
schedules of the given sDFG. We have used the ASAP 
latency of the sDFG as the upper bound latency for the 
ALAP schedule. Note that computing the earliest and latest 
start times of operations (i.e. ASAP and ALAP schedules) 
is a significantly simpler task than actual resource 
constrained scheduling, which will take place during 
synthesis and will employ a much more complex 
optimizing heuristic to solve the intractable resource 
constrained scheduling. Let ASAP(v) and ALAP(v) be the 
ASAP and ALAP times of node v∈V. Once we have both 
the ASAP and ALAP schedules, we designate a lower 
bound on queue sizes to each edge of the sDFG, 

QedgeMin(i, j) = ASAP(j) − ALAP(i) − lat(i),  

i, j ∈V, e(i, j)∈E                                                                                                                                                                                                                          (2a) 
It may so happen that ASAP(j) is actually less than 

ALAP(i) + lat(i) which yields a negative queue size for 
edge e(i, j). However, queue sizes cannot be negative, and 
there must be a queue at the output of every FU. Therefore, 
for such cases we have, 

QedgeMin(i, j) = 1, i, j∈V, e(i, j)∈E                                                                                                                      (2b) 
The lower bounds on the queue sizes assigned to each 

edge in this step are not very tight. Remainder of our 
efforts in queue size estimation is to further tighten these 
lower bounds using various novel steps as described in the 
following subsections. 
4.3. Refinement of Queue Sizes of Edges 
We aim to refine the lower bounds on queue sizes under 
the given resource constraints. Our main tool is based on 
the likelihood estimation that the source node may actually 
be producing data before its ALAP time, and likewise, the 
sink node may actually be consuming data after its ASAP 
time. The likelihood of the source and sink nodes of an 
edge being moved up and down respectively during the 
actual scheduling depends primarily on resource 
constraints of the design and criticality of the nodes. In 
addition, it will be affected by the heuristics that a 

particular scheduler applies to optimize the throughput by 
reducing the register or interconnect pressure. We propose 
a probabilistic push-and-pull approach, which estimates 
the amount by which a sink node is expected to be pushed 
down and the source node to be pushed up for an edge 
during scheduling. This will denote an increase in the 
initial lower bound of queue size assigned to each edge. 
For each edge e(i, j)∈E, we define ∆i as the number of 
cycles by which node i is expected to be pulled up, and 
similarly, ∆j as the number of cycles by which node j is 
estimated to be pushed down.  
4.3.1. Pull Force and ∆i Computation 
Figure 4 shows the probabilistic push-and-pull queue 
expansion of an edge, where each node n is marked with a 
set of values, [ASAP(n), ALAP(n), slack(n)], and slack(n) is 
given by ALAP(n) − ASAP(n). 

Now let us consider node i in Figure 4. Node i can be 
pulled up by the scheduler because it may actually be 
scheduled earlier, therefore produce data before its ALAP 
time. Let P(i)k be the probability that node i is scheduled in 
cycle k. So, assuming that node i can be pulled up only up 
to ASAP(i), we have, 
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iASAPk
kiP , and k < ASAP(i) ∨ k > ALAP(i) ⇒ P(i)k = 0  

If the scheduler primarily tries to optimize latency, it 
will try to pull up node i as high as possible from its ALAP 
cycle. But due to the resource constraints, it can pull up 
node i only by a certain extent, depending upon the number 
of more critical nodes in the interval [ASAP(i), ALAP(i)] 
and the number of similar operations in each cycle of the 
ALAP schedule in that interval. On the other hand, the 
scheduler will try to reduce the register burden by trying to 
schedule node i as close as possible to its ALAP cycle. 
These two counter-acting forces ultimately determine the 
total pull force exerted on node i. 

Let MoreCritALAP(i) be the number of more critical 
nodes in the interval [ASAP(i), ALAP(i)] of the ALAP 
schedule, and let N(i) be the number of FUs available to 
implement the operation performed by node i, then, we 
define MaxUp(i) as the cycle up to which node i can be 
pulled up from its ALAP cycle, and is given by, 

MaxUp(i) = ASAP(i) + MoreCritALAP(i) / N(i)                 (4) 
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It can so happen that that MaxUp(i) is greater than 
ALAP(i) because of larger number of more critical nodes 
than node i and/or fewer available resources. In such cases 
we have, MaxUp(i) = ALAP(i).                                                                     

In Figure 4, assuming we have only one functional unit 
that can implement operations a, b, and i, we have 
MaxUp(i) equal to 3, because nodes a and b are more 
critical than node i. In other words, node i cannot be pulled 
up any further above cycle 3. Therefore, both P(i)1 and 
P(i)2 equal 0, because our technique assumes that cycles 1 
and 2 are reserved for nodes a and b. 

Next, we will calculate P(i)k for each k within the 
interval [MaxUp(i), ALAP(i)]. The probability that node i 
is scheduled in cycle k depends on the contention for 
resources within cycle k. Also, since the scheduler will try 
to alleviate the register burden of each node, it will try to 
schedule it as close as possible to its ALAP cycle.  

Let Nk(i) be the number of operations of the same type 
as node i in cycle k of the ALAP schedule, then the pull 
force on node i by cycle k will be given by,  

Pull(i)k = (k – MaxUp(i) + 1) / Nk(i)                                     (5) 
Based on the pull forces, we compute P(i)k as, 
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We then compute the expected value of ∆i, which is the 
number of cycles that node i is likely to be pulled up, based 
on P(i)k as, 
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4.3.2. Push Force and ∆j Computation 
Now let us consider node j in Figure 4. Node j can be 
pushed down by the scheduler because it may actually be 
scheduled later therefore consume data after its ASAP 
time. Let P(j)k be the probability that node i is scheduled in 
cycle k. We assume that node j can be pulled down up to 
cycle ALAP(j) + ItIr – 1, we have, 

1)(
1)(
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=∑
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=

ItIrjALAP

jASAPk
kjP , and 

k < ASAP(j) ∨ k > ALAP(j)+ItIr –1 ⇒ P(j)k = 0      

Let MoreCritASAP(j) be the number of more critical 
nodes in the interval [ASAP(j), ALAP(j) + ItIr – 1] of the 
ASAP schedule, and let N(j) be the number of FUs 
available to implement the operation performed by node j. 
We define MinDown(j) as the cycle up to which node j is 
estimated to be pushed down from its ASAP cycle, 

MinDown(j) = ASAP(j) + MoreCritASAP(j) / N(j)             (8a) 
It can so happen that MinDown(j) is greater than 

ALAP(j) + ItIr – 1 because of larger number of more 
critical nodes than node j and/or fewer resources available. 
In such cases we have,  

MinDown(j) = ALAP(j) + ItIr – 1                                             (8b) 
By similar arguments, for the push force, we calculate 

P(j)k for each k within the interval [MinDown(j), ALAP(j) + 
ItIr – 1] in a similar manner. 

Push(j)k = (ALAP(j) + ItIr – k) / Nk(j)                                                                       (9) 
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Finally, we compute the expected value of ∆j, which is 
the number of cycles that node j is likely to be pushed 
down as,   
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Now, the new expanded queue size for each edge e(i, j) 
will be, QedgeExpand(i, j) = QedgeMin(i, j) + E[∆i] + E[∆j]       

From the queue sizes of the edges we calculate the 
queue size of nodes. The expanded queue size of each node 
will simply be the maximum queue size of all outgoing 
edges of that node. Therefore, based on that we have, 

QnodeExpand(i) = max{QedgeExpand(i, j) : e(i, j)∈E}                  (12) 
Now, that we have QnodeExpand(i), because of the 

iteration interval (ItIr) this will be reduced by a factor of 
ItIr. If ItIr equals 1, i.e. a new iteration starts every cycle, 
the queue sizes are at their maximum. If ItIr equals 2, then 
a new iteration starts every other cycle, and in that case the 
required queue size of all nodes are halved and so on. 
Therefore, the final queue size of a node i is given by, 

Qnode(i) = QnodeExpand(i) / ItIr                                                                                                                                                (13) 

4.4. Final Refinement of Queue Sizes of FUs by 
Resource Constraint Correction Factor 

Because of resource constraints, more than one node of the 
sDFG may be mapped onto a single FU. Let t be the 
number of types of FUs, and there are M1, M2, ..., Mt FUs 
of each type. If the sDFG has N1, N2, ..., Nt nodes that are 
mapped onto these FUs, the average number of nodes 
mapped per FU of type i will be Ni/Mi ∀ 1≤i≤t. When 
multiple nodes are mapped onto a single FU, the queue at 
its output is also shared by the nodes.  

With resource sharing, the queue size of an FU will be 
determined by the Qnode values of the nodes mapped onto 
that FU. Therefore, queue size of an FU has to be at least 
the maximum of Qnode values, and at most the sum of the 
Qnode values. However, there are two counteracting factors 
that determine the actual queue size of an FU. First, with 
fewer resources, more nodes are mapped onto a particular 
FU, and this tends to reduce the queue size at the output of 
each FU. Second, as resources become scarce, there will be 
more contention for resources, and hence the result 
produced by a node has to be in the queue for a longer 
duration before it can be consumed. This denotes an 
increase in the queue size of an FU. Based on these 
observations, we experimented with various resource 
constraints to determine a Resource Constraint Correction 
Factor (RCCF) for type t of FU, given by, 

  )/ln(
1

eMN
RCCF

tt
t +
=                                                                                                                                                              (14) 

The natural logarithmic base e is introduced in 
Equation (14) to make sure that RCCF is at most 1, which 
is the case when there are more resources available than 
operations.  

Since our estimation is at a pre-scheduling stage, it is 
not known how the nodes are distributed among the FUs. 
Therefore, we estimate QTotal, which is the total queue size 
of all FUs. The total queue size of all FUs of a particular 
type is determined by the sum of all nodes of that type 



multiplied by the RCCF of that type. Finally, the total 
queue size for all FUs is simply the sum of queue sizes of 
all such types of FUs. Therefore QTotal is given by, 

))((
1 1
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t
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5. BITWIDTH SENSITIVE FUNCTIONAL UNIT 
AREA ESTIMATION 

The pre-synthesis area estimation technique presented in 
this paper performs a fast 
area estimation of a 
streaming kernel. Similar 
to the queue size 
estimation technique, the 
input to the FU area 
estimation is also a sDFG 
and a set of resource 
constraints. In addition, 
the input to the tool will 
also include knowledge 
of resource usage of 
operations mapped onto 
FUs. Figure 5 shows our 
FU area estimation 
methodology.  

5.1. Library Creation 
The first step of our functional unit area estimation is to 
create a library that contains the area cost information of 
different operations. The entries in the library file are 
obtained by synthesizing designs that only use that 
particular resource for which we are trying to estimate the 
area. For example, to estimate the area of a FU that 
performs a vadd operation (basic add operation in RSVP™ 
II Instruction Set Architecture), we synthesize a hardware 
description of the adder block (and associated registers) 
using Xilinx ISE 8.1. This is done for various bitwidths of 
the vadd operation. 

Although each operation is synthesized for different 
bitwidths (8, 16, 24, and 32) of the inputs, synthesizing 
each operation for all possible bitwidths will require 
substantial amount of time and resources. Therefore, 
whenever the estimation tool does not find a corresponding 
entry in the library, it inter/extrapolates the resource usage. 
For example if the library has entries for 16-bit and 24-bit 
vadd operation, but an estimate is needed for 20-bit, the 
tool interpolates the number of required FPGA slices from 
the 16-bit and 24-bit vadd entries. 

The estimation of multiplexer area is more complicated 
because the number of FPGA slices depends not only on 
the bitwidth and the number of inputs, but also on the 
number of don’t care inputs (no-ops) and their relative 
positions. Therefore synthesizing multiplexers to create 
library entries with all these variations is time consuming 
and inefficient. Hence, to estimate multiplexer area, we 
resorted to a standard curve-fitting technique. The number 
of FPGA slices for multiplexers is generated by a second 
degree least square curve fitting function based on the 
input size, bitwidth, and the number of don’t care inputs. 
5.2. Estimation of Functional Units 
In the first phase of our functional unit area estimation, we 
estimate the iteration interval ItIr of the given sDFG based 
on the given resource constraints, as described in Section 
4.1. Once we estimate the iteration interval of the given 
sDFG we need to estimate the number of FUs of each type 
that are required. Let Ni be the number of operations of 
type i in the sDFG, which can be implemented using a 

functional unit of type i. Also, let there be t types of 
functional units, and Mi be the number of available 
functional units of type i as specified by the resource 
constraints. Then the estimated number of functional units 
of type i, mi, is given by, 

mi = Ni/ItIr                  ∀i : 1 ≤ i ≤ t ⇒ mi ≤ Mi                                                                                  (16) 

Once we estimate the number of required functional 
units, the sDFG is scanned to gather information about 
what operations are performed and their bitwidths. Note 
that the input sDFG is annotated with required bitwidths of 
individual operations. In many synthesis flows bidwith 
allocation is performed first to achieve minimal operator 
bitwidths for a required computation accuracy. Such an 
optimization pass would already be applied to the input 
sDFGs before starting our estimation phase. We then 
categorize operations into a small number of subsets based 
on their bitwidths. For instance, we categorize operations 
into four groups in terms of their bitwidths (1-8 bits, 9-16 
bits, 17-24 bits, and 25-32 bits). Next, we estimate what 
sizes of functional units are likely to be used by the 
scheduler to map these operations from these categories. 
The estimated number of functional units, mi, is distributed 
proportionately among each such bitwidth group. The 
rationale behind this is to emulate the bitwidth-aware 
optimization that will be performed by the actual 
scheduler. When mapping a sDFG onto reconfigurable 
logic, the scheduler takes advantage of the fact that on 
reconfigurable logic bitwidths of individual functional 
units can be customized in order to create an area efficient 
design. To achieve this, the scheduler will try to group 
operations of similar bitwidths together and assign them to 
the same functional unit.  

In the RSVP™ II architecture, a single type of FU can 
implement several types of operations. Each of these 
operations will have different resource requirements when 
mapped to a FU, depending on their complexity. However, 
at the pre-scheduling stage it is not known which particular 
FU will perform which set of compatible operations. 
Therefore, in order to make an area estimation of a 
particular type of FU, we use the maximum area usage 
among all operations of a sDFG that can be mapped onto 
that FU. Let FUt be a functional unit of type t that 
implements operations opt1, opt2, ..., optn of a particular 
bitwidth group, and their respective area usage be 
Areaop(t1), Areaop(t2), ..., Areaop(tn). Therefore, the estimated 
area of such a functional unit, AreaFU(t), in terms of FPGA 
slices, is given by, 
AreaFU(t) = max1≤i≤n(Areaop(ti))                                                                                                                                               (17) 

Table I. Resource requirements for different operations 

Operation # inputs # slices 
vabs 1 16 
vadd 2 9 
vneg 1 8 
vsub 2 24 

 
Table I shows the four operations that are implemented 

by the ALU FU. The number of slices depends on the 
number of inputs of the operation and their bitwidth (16-bit 
in this case). As seen from Table I, operation vneg requires 
only 8 slices, whereas the vsub operation requires 24 
slices. In such cases, if a FU implements more than one 
such operation, for our estimation we choose the one with 
the largest number of slices. For example, if a FU 
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implements vadd and vabs operations, we estimate the 
area of that FU as 16 slices. 
5.3. Estimation of Multiplexers 
Once we have estimated the number of different functional 
units of each type, we need to estimate the number and size 
of the multiplexers at the inputs of those functional units. 
In addition, we will also need a multiplexer for each 
functional unit to choose between the different operations 
it performs in different cycles. Therefore, for an n-input 
functional unit, we need n+1 multiplexers. The bitwidth of 
the multiplexers at the inputs of functional units will be 
determined from the bitwidth specification of the 
operations as specified in the sDFG. 

The number of inputs of a multiplexer will be equal to 
the iteration interval because in each cycle of the iteration 
interval the multiplexer has to choose the appropriate input 
from a set of available signals. So the number of inputs of 
the multiplexers, Mux#IP = ItIr   , such that the number of 
selector bits for the multiplexer Mux#SelBits = log2(ItIr)  .                
 As stated in Section 5.1 the area of multiplexers in our 
estimation is based on three parameters: (i) Number of 
inputs, (ii) Bitwidth of inputs, and (iii) Number of no-ops. 
Now, since we do not know which operations are mapped 
to which functional units, we assume uniform distribution 
of operations among FUs. Therefore for Nt operations of 

type t, and mt FUs of type t, we assume that each FU 
implements Nt/mt operations. So, the number of no-ops 
among its inputs Mux#NoOps = Mux#IP – Nt/mt   .                                                                         
 Finally, if MuxOpndBW(t) is the bitwidth of a multiplexer, 
the area of a multiplexer at the inputs of a functional unit 
of type t is estimated as a function f of these three 
parameters, as, 

AreaOpndMUX(t) = f (Mux#IP(t), MuxOpndBW(t), Mux#NoOps(t))       (18) 
and the bitwidth of the multiplexer that chooses between 
the operations the FU performs is given by, 

MuxOpsBW(t) = log2(Nt/mt)                                                                                                                                                                      (19) 
Therefore, the area of the multiplexers for choosing the 
operations performed by the functional units is given by, 

AreaOpsMUX(t) = f (Mux#IP(t), MuxOpsBW(t), 0)                                                                                 (20) 
This function f is a second order curve fitting equation 

based on a set of multiplexer area determined by synthesis 
with Xilinx ISE 8.1.  

Finally, the total area of the functional units and the 
multiplexers will be given by AreaDataPath as, 
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Table II. Queue size estimation results 

RC Set 1 RC Set 2 RC Set 3 RC Set 4 

Application 
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dctCol 85 103 152 47.6 103 152 47.6 36 44 22.2 36 44 22.2 
dctRow 95 111 168 51.4 71 168 136.6 41 49 19.5 41 49 19.5 

hpf_med_cc 157 404 347 -14.1 263 194 -26.2 76 91 19.7 77 85 10.4 
lpf_gc_rgb 221 697 508 -27.1 394 293 -25.6 103 117 13.6 108 107 -0.9 

lpr 67 150 110 -26.7 150 110 -26.7 58 67 15.5 39 42 7.7 
open 30 71 47 -33.8 71 47 -33.8 44 34 -22.7 30 29 -3.3 
quant 10 13 13 0.0 13 13 0.0 13 13 0.0 13 13 0.0 

RsvpLPR 67 150 110 -26.7 150 110 -26.7 58 67 15.5 39 42 7.7 
Average 92.7 212.4 181.9 -14.4 151.9 135.9 -10.5 53.6 60.3 12.4 47.8 51.4 7.3 

              

5.4. Complexity 
Finally, we would like to emphasize that the complexity of 
our estimation paradigm is largely insignificant in 
comparison to the complexity of the optimizing scheduler 
and the remainder of the behavioral and physical synthesis 
steps. Therefore, performing the abovementioned steps is 
justified in terms of computational cost as opposed to 
performing the actual synthesis steps. More specifically, 
we observe that the combined run time of our estimation 
for all of the applications takes less than a few seconds. On 
the other hand, scheduling and synthesizing each 
application takes several minutes using an industrial 
automated front-end synthesis tool and Xilinx ISE 8.1 
physical synthesis backend tools. 

6. EXPERIMENTAL RESULTS 
The effectiveness of the proposed estimation paradigm is 
evaluated for a set of industrial applications from the 
multimedia domain. This benchmark suite includes various 

video and image compression and filtering algorithms (e.g. 
dctCol, hpf_med_cc, lpf_gc_rgb) as well as applications 
such as license plate recognition (RsvpLPR). We compare 
our estimates for both the steps in our framework with 
corresponding results generated by the toolflow proposed 
by Bellas et al. [16]. In the following, we present our 
experimental results for each of the estimation method.  
6.1. Queue Size Estimation Results 
We have evaluated our queue size estimation technique on 
a set of industrial multimedia applications. For each 
application we have chosen four different sets of resource 
constraints. We compare our results by the required queue 
sizes as determined by the modulo scheduler employed by 
an industrial automated synthesis tool [16]. Table II shows 
our results. In Table II, RC (Resource Constraint) Set 1 
corresponds to unlimited resources, and the resources 
become scarce progressively across RC Set 2 through Set 
4. 



From Table II we observe that as the available 
resources decrease (From RC Set 1 to RC Set 4), the queue 
sizes also decrease, as discussed in Section 4.4. This is 
because when there are plenty of resources (e.g. RC Set 1), 
each node (operation) of the sDFG is assigned its own 
functional unit, and there is no sharing of the queue at the 
output of the functional unit. When resources are scarce 
(e.g. RC Set 4), the queue sizes are reduced substantially 
because of resource sharing. 

Resource sharing can impact the queue sizes. However, 
this is decided by the scheduler and after our estimation. 
Therefore, since we are only interested in the overall 
register queue size of an application mapped onto an 
FPGA, and we have no knowledge of how resources are 
shared, our estimates are based on the average number of 
operations mapped per functional unit. 
6.2. Functional Unit Area Estimation Results 
For the functional unit area estimation, we have evaluated 
our results by comparing the area obtained by our 
estimation to that generated by the industrial hardware 
generator tool as described in [16]. The Verilog code 
generated is synthesized using Xilix ISE 8.1, and mapped 
onto Virtex 4 XC4VLX100 FPGA. Table III shows our 
estimation results. The results presented in Table III 
correspond to the same set of resource constraints as in RC 
Set 3 in Section 6.1, which is the default configuration of 
the RSVP™ II architecture. 

Table III. Functional Unit Area Estimation 

# Slices 
Application 

Synthesized Estimated 

% 
Error 

dctCol 2175 2245 3.2 
dctRow 1937 2375 22.6 

hpf_med_cc Over-mapped 3192 NA 
lpf_gc_rgb 4324 5140 18.9 

lpr 1520 1805 18.8 
open 1132 1095 -3.3 
quant 492 422 -14.2 

RsvpLPR 1520 1805 18.8 
Average 1871.4 2126.7 13.6 

    
As seen from Table III, for the application hpf_med_cc 

the estimation error cannot be calculated because the 
design could not be synthesized on any Xilinx Virtex 4 
device. The Virtex 4 XC4VLX100 has 960 user I/Os, 
which is the maximum I/O capability provided in this 
family of devices. However, this particular application 
requires more than 960 I/Os, and the synthesis process fails 
at the mapping stage as the device was overmapped. The 
I/O usage is one aspect that cannot be captured in our 
estimation framework in its current form, since we focus 
on area cost estimation. For the remainder of the 
applications, our estimation is accurate and with an 
average error of 13.6%. Previous work by Kulkarni et al. 
[6] reports results that are about 10% better than ours. 
However, their estimation is based on a 1-to-1 mapping of 
nodes of the DFG to resources. Our estimation is trying to 
capture a more general case by taking resource constraints 
and sharing into account.  

7. CONCLUSIONS 
In this paper we have presented a framework to provide 
early estimates of the implementation cost of 

reconfigurable streaming accelerators. Our estimation 
methodology has two steps: (1) A probabilistic push-and-
pull approach to determine the register queue size at the 
outputs of functional units, (2) A library based approach to 
estimate the functional unit area incorporating bitwidth 
awareness. We evaluated our estimation results based on 
synthesized designs using an industrial template-based 
toolflow for a set of multimedia applications. For the 
register queue sizes our estimations are within the range of 
-14.4% to 12.4% on an average. The estimated area of the 
functional units is 13.6% higher on an average than that of 
the synthesized designs. 
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